Preview

Central Asian Economic Review

Advanced search

REAL ESTATE FAIR VALUE: MODERN APPROACH OF CALCULATION METHODS

Abstract

Purpose – to develop methodical approach to determine the fair value of real estate on the example of housing in Almaty.
Methodology – comparative and econometric research methods Originality/value - the results of the statistical analysis show the applicability of statistical analysis as a tool for estimating the fair value of investment property for financial reporting. In addition, the findings can be a basis for a mass valuation of residential real estate in Almaty by appraisal and real estate companies to forecast housing prices or determine the market value of real estate.
Findings – statistical analysis methods can be used to determine the fair value of investment property. The main factors affecting the cost of residential real estate in Almaty are location, total area, type of layout and condition of the finish. The analysis shows buyers give more preference to the secondary market than to new buildings.

About the Authors

G. Shulenbayeva
Narxoz University JCS
Kazakhstan

Gaisha Shulenbayeva, PhD student

Almaty



M. Issabayev
Narxoz University JCS
Kazakhstan

Issabayev Murat, PhD, Research-Professor

Almaty



References

1. Drapikovskiy A.I. i dr. Metodyi i modeli otsenivaniya nedvizhimogo imuschestva. Uchebn. posobie / Drapikovskiy A.I., Ivanova I.B., Tereschenko N.A. – Bishkek: OsOO, V.R.S. Company, 2018. – 540 s. (In Russian)

2. Prikaz Ministra finansov Respubliki Kazahstan ot 5 maya 2018 goda # 519. Zaregistrirovan v Ministerstve yustitsii Respubliki Kazahstan 31 maya 2018 goda # 16971 (In Russian)

3. Dreyper N., Smit G. Prikladnoy regressionnyiy analiz: v 2-h kn. / per. s angl. 2-e izd., pererab. i dop. M.: Finansyi i statistika. Seriya: Matematiko-statisticheskie metodyi za rubezhom, 1986. – 366 s. (In Russian)

4. Organizatsiya otsenki i nalogooblozheniya nedvizhimosti / Pod obsch. red. Dzh. K. Ekkerta: V 2 t.; Per. s angl. M.: Rossiyskoe obschestvo otsenschikov, Akademiya otsenki, Star Inter, 1997. Т. 1. 382 с.; Т. 2. 442 s. (In Russian)

5. Zaks L. Statisticheskoe otsenivanie / Per. s nem. V.N. Varyigina; Nauch. red. i predisl. Yu.P. Adlera i V.G. Gorskogo. – M.: Statistika, 1976. – 598 s. (In Russian)

6. Sternik G.M., Sternik S.G. Metodologiya modelirovaniya i prognozirovaniya zhilischnogo ryinka. – Moskva: Prospekt, 2018. – 592 s. (In Russian)

7. Gribovskiy S.V., Sivets S.A., Levyikina I.A. Matematicheskie metodyi otsenki stoimosti imuschestva. – M.: Maroseyka, Knizhnaya Liniya, 2014. – 352 s. (In Russian)

8. Court, Louis M. (1941), “Entrepreneurial and Consumer Demand Theories for Commodity Spectra” Econometrica, April, р. 135-62; July-October, р. 97-241

9. Tinbergen, Jan. “Some Remarks on the Distribution of Labour Incomes” International Economic Papers, p. 195-207

10. Rosen, S. (1974), “Hedonic prices and implicit markets: product differentiation in pure competition” Political Economic, 82 (1), p. 34-55

11. Sheppard, S. (1999), Chapter 41 “Hedonic analysis of housing markets” Applied Urban Economics, p. 1595-1635. doi:10.1016/s1574-0080(99)80010-8

12. Pintér, G. (2018), “House Prices and Job Losses” The Economic Journal. doi:10.1111/ecoj.12613

13. Badarinza, C., & Ramadorai, T. (2018), “Home away from home? Foreign demand and London house prices” Journal of Financial Economics. doi:10.1016/j.jfineco.2018.07.010

14. Robert K., Fergal M., Conor O. (2018), “Credit conditions, macroprudential policy and house prices” Journal of Housing Economics. Volume 41, September 2018, p. 153-167, https://doi.org/10.1016/j.jhe.2018.05.005

15. Agnello, L., Castro, V., Hammoudeh, S., & Sousa, R. M. (2017), “Spillovers from the oil sector to the housing market cycle” Energy Economics, 61, p. 209-220. doi:10.1016/j.eneco.2016.11.004

16. Monnet, E., & Wolf , C. (2017), “Demographic cycles, migration and housing investment” Journal of Housing Economics, 38, p. 38-49. doi:10.1016/j.jhe.2017.09.001

17. Jim, C. Y., & Chen, W. Y. (2006), “Impacts of urban environmental elements on residential housing prices in Guangzhou (China)” Landscape and Urban Planning, 78(4), p. 422-434. doi:10.1016/j.landurbplan.2005.12.003

18. Sing, T. F. (2001), “Dynamics of the Condominium Market in Singapore” International Real Estate Review, 4(1), p. 135-158

19. Zhang, L., & Yi, Y. (2018), “What contributes to the rising house prices in Beijing? A decomposition approach” Journal of Housing Economics, 41, p. 72-84. doi:10.1016/j.jhe.2018.04.003

20. Portnov, B. A., Odish, Y., & Fleishman, L. (2005), “Factors Affecting Housing Modifications and Housing pricing: A Case Study of Four Residential Neighbourhoods in Haifa, Israel” Journal of Real Estate Research, 27(4), 371-394

21. D’ Albis, H., Boubtane, E., & Coulibaly, D. (2018), “International Migration and Regional Housing Markets” International Regional Science Review, 016001761774928.doi:10.1177/0160017617749283

22. Sihimbaev M.R., Kumisbekova Zh.A. Matematicheskie metodyi otsenki stoimosti nedvizhimogo imuschestva // Mezhdunarodnyiy zhurnal prikladnyih i fundamentalnyih issledovaniy, (6-1)2015, s. 119-123; URL: https://www.applied-research.ru/ru/article/view?id=6856 (Accessed April, 19, 2019) (In Russian)

23. Baronin S.A._ Lyulkina N.M. Nauchno_prakticheskie aspekti teorii massovoi ocenki nedvijimosti // Izvestiya Yugo_Zapadnogo gosudarstvennogo universiteta. – 2011, № 5-2 (38). – с. 316-321

24. Popov A.Yu. Investicionnaya nedvijimost_ rossiiskie i mejdunarodnie koncepcii ocenki i buhgalterskogo ucheta // Finansovii jurnal. – 2015, № 6. – с. 80-89

25. Gribovskiy S.V., Sokolov B.V. Zadacha nailuchshego i naibolee effektivnogo ispolzovaniya ob'ektov nedvizhimosti pri massovoy otsenke //Voprosyi otsenki, № 1(99), s. 24-33 (In Russian)

26. Zietz, J., Zietz, E.N. & Sirmans, G.S. J. (2008), “Determinants of House Prices: A Quantile Regression Approach” Real Estate Finance Econ, 37, p. 317. https://doi.org/10.1007/s11146-007-9053-7

27. Benson, E.D., Hansen, J.L., Schwartz, A.L. et al. (1998), “Pricing Residential Amenities: The Value of a View” The Journal of Real Estate Finance and Economics, 16, p. 55. https://doi.org/10.1023/A:1007785315925

28. Morano P., Tajani F. (2014), “Least median of squares regression and minimum volume ellipsoid estimator for outliers detection in housing appraisal”. Int. J. Business Intelligence and Data Mining, Vol. 9, No. 2, p. 91-111


Review

For citations:


Shulenbayeva G., Issabayev M. REAL ESTATE FAIR VALUE: MODERN APPROACH OF CALCULATION METHODS. Central Asian Economic Review. 2019;(4):25-39. (In Russ.)

Views: 405


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2789-4398 (Print)
ISSN 2789-4401 (Online)