SPATIAL CONCENTRATION AND FIRM-LEVEL PRODUCTIVITY IN KAZAKHSTAN
https://doi.org/10.52821/2789-4401-2023-1-6-21
Abstract
Purpose of the research. This paper studies the effect of spatial agglomeration on firms’ total factor productivity in Kazakhstan using panel data from 2009 to 2017.
Methodology. We employ a two-stage estimation strategy and control for endogeneity biases by making use of the GMM approach. The firm-level data is obtained from the Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan.
Originality / value of the research. This study contributes to an empirical study of spatial concentration and firm-level productivity in developing countries and provides valuable insights for policymakers to consider before implementing government programs.
Findings. The results suggest that productivity increases with clustering: a 10 % increase in the number of employees of the neighboring firms inside the same industry increases firm-level productivity by 1.36 %, while a 10 % increase in employment in other industries enhances firm performance by 1.95 %. The productivity gains are higher at the 2-digit regional level rather than at the 9-digit sub-regional level of geographical aggregation, implying that the denser geography increases firms’ performance.
About the Author
Z. M. AdilkhanovaKazakhstan
Adilkhanova Zarina Muratovna – master of arts in economics, senior researcher, Economic Modeling Development Center
Astana
References
1. Storper M., Venables A. Buzz: face-to-face contact and the urban economy // Journal of Economic Geography. – 2004. – № 4(4). – P. 351-370.
2. Audretsch D., Feldman M. Knowledge spillovers and the geography of innovation // Elsevier: Handbook of Regional and Urban Economics. – 2004. – № 4. – P. 2713-2739.
3. Carreira C., Lopes L. Regional knowledge spillovers: a firm-based analysis of non-linear effects // Regional Studies. – 2018. – № 52(7). – P. 948-958.
4. Marshall A. Principles of economics. – Macmillan, London, 1890. – 320 p.
5. Berliant M., Reed R., Wang P. Knowledge exchange, matching, and agglomeration // Journal of Urban Economics. – 2006. – № 60(1). – P. 69-95.
6. Wooldridge J. On estimating firm-level production functions using proxy variables to control for unobservables // Economics Letters. – 2009. – № 104. – P. 112-114.
7. Andersson M., Loof H. Agglomeration and Productivity – evidence from firm-level data // Working Paper Series in Economics and Institutions of Innovation. No. 170. – CESIS, 2009. – 39 p.
8. Combes P.-P., Duranton G., Gobillon L., Puga D., Roux S. The productivity advantages of large cities: Distinguishing agglomeration from firm selection // Econometrica. – 2012. – № 80(6). – P. 2543-2594.
9. Harris R., Moffat J. Total factor productivity growth in local enterprise partnership regions in Britain // Regional Studies. – 2015. – № 96(6). – P. 1019-1041.
10. Lopez R., Sudekum J. Vertical industry relations, spillovers, and productivity: Evidence from Chilean plants // Journal of Regional Science. – 2009. – № 49(4). – P. 721-747.
11. Martin P., Mayer T., Mayneris F. Spatial concentration and plant-level productivity in France // Journal of Urban Economics. – 2011. – № 69(2). – P. 182-195.
12. Hashiguchi Y., Tanaka K. Agglomeration and firm-level productivity: A Bayesian spatial approach // Papers in Regional Science. – 2015. – № 94. – S95-S114.
13. Cainelli G., Ganau R. Distance-based agglomeration externalities and neighboring firms’ characteristics // Regional Studies. – 2018. – № 52(7). – P. 922-933.
14. DiGiacinto V., Gomellini M., Micucci G., Pagnini M. Mapping local productivity advantages in Italy: Industrial districts, cities or both? // Journal of Economic Geography. – 2014. – № 14. – P. 365-394.
15. Levinsohn J., Petrin A. Estimating production functions using inputs to control for unobservables //Review of Economic Studies. – 2003. – № 70(2). – P. 317-341.
16. Cainelli G., Fracasso A., Marzetti G. V. Spatial agglomeration and productivity in Italy: A panel smooth transition regression approach // Papers in Regional Science. – 2015. – № 94. – S39-S67.
17. Combes P.-P., Gobillon L. The empirics of agglomeration economies // Elsevier: Handbook of urban and regional economics. – 2015. – № 5. – P. 247-348.
18. Olley S., Pakes A. Dynamic behavioral responses in longitudinal data sets: Productivity in telecommunications equipment industry // Econometrica. – 1996. – № 64(6). – P. 1263-1297.
19. Wooldridge J. Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity // Journal of applied econometrics. – 2005. – № 20(1). – P. 39-54.
20. Ackerberg D., Caves K., Frazer G. Structural identification of production functions? // MPRA Paper, 38349. – 2006. – 42 p.
21. Statistical forms for [Electronic resource] // Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan [website]. – 2021. – URL: https://stat.gov.kz/en/respondents/statistical-forms/ (Accessed: 16.01.2023).
22. Henderson J. V. Marshall’s scale economies // Journal of Urban Economics. – 2003. – № 53(1). – P. 1-28.
Review
For citations:
Adilkhanova Z.M. SPATIAL CONCENTRATION AND FIRM-LEVEL PRODUCTIVITY IN KAZAKHSTAN. Central Asian Economic Review. 2023;(1):6-21. https://doi.org/10.52821/2789-4401-2023-1-6-21